Document Revision History

Figure.

Date Author Changes Notes
27.6.2016 Alex Barchiesi Prima Bozza
Alberto Colla
28.6.2016 Fulvio Galeazzi Monitoring
30.6.2016 Mario Reale Aggiunta sezione
Autenticazione ed
Autorizzazione
1.7.2016 Mario Reale Aggiunti requisiti da Da integrare nel
Paolo Velati documento
5.7.2016 Alex Barchiesi Completati diagrammi
Alberto Colla
Mario Reale
8.7.2016 Simone Visconti Ansible
Davide Vaghetti Review AAI
11.7.2016 Fabio Farina Revisione, commenti e
integrazione
12.7.2016 Alex Barchiesi Revisione
Alberto Colla
20.7.2016 Alex Barchiesi Chiusura doc
21.7.2016 Beppe Attardi Major restructuring
23.7.2016 Beppe Attardi Revisione architettura e
aggiunto rationale
25.7.2016 Alex Barchiesi Minor revisions
Alberto Colla
18.9.2016 Beppe Attardi Tradotte parti in inglese
21.9.2016 Beppe Attardi Section on public
clouds
29.9.2016 Beppe Attardi Handling of quotas in
domains
2.10.2016 Beppe Attardi Added sections on
Operations and User
Guide
30.11.2016 Beppe Attardi Spun off GARR-X
section to separate
document
20.2.2017 Alex Barchiesi Revision
Figures/Schemes
6.4.2017 Beppe Attardi Change Prometheus in

11.04.2017

Fulvio Galeazzi

Revised Ceph
description

17/5/2017

Beppe Attardi

Added Gnocchi and
Ceilometer

Reference Architecture for the GARR
Federated Cloud

High Level Design

1 Introduction
2 Cloud Platform: OpenStack
2.1 OpenStack Components
3 Service Architecture
4 Federated Architecture
4.1 Segregation and Sharing
4.1.1 Domains and Hierarchical Projects

4.2 Central Authentication

4.3 Architecture Overview

4.4 Public and Private Clouds

4.5 Architecture Design Criteria
4.5.1 Cloud controller
4.5.2 Database
4.5.3 Message queue
4.5.4 Images
4.5.5 Dashboard
4.5.6 Authentication and authorization
4.5.7 Network requirements
4.5.8 MAAS and Juju

4.6 OpenStack Reference Architecture
4.6.1 Logical model

4.7 Networking

4.8 Storage
4.8.1 Object Storage

4.8.2 Block Storage
Ceph
4.8.3 Distributed File Storage
4.9 Users and Access Authorization
4.10 Authentication and Authorization
4.11 Monitoring
4.11.1 Hardware Monitoring
4.11.2 Troubleshooting
4.11.3 Software Monitoring
4.11.4 Metering and Billing
4.12 High Availability
4.13 Security
5 Orchestration and automation
5.1 Automation Tools
5.1.1 MaaS
5.1.2 Juju
5.1.3 Ansible
6 Building the Cloud
6.1 Installation of the Cloud Platform
6.1.1 Bare Metal Provisioning
6.1.2 OpenStack Provisioning
6.2 Application Services Provisioning
7 Building a Region
Deploying PaaS with Juju
7.2 Isolating Volumes among projects

Table of Contents

7.3 Managing availability zones
8 Administering the Cloud
8.1 Managing a Domain
8.1.1 Overview
8.1.2 Creating a domain
8.1.3 Assigning a zone to a domain
8.1.4 Managing Domain Quotas
8.1.5 Editing the domain quotas
8.1.6 Setting the Domain Administrator
8.1.7 Setting a domain context
8.1.8 Clearing the domain context
8.1.9 Managing security groups
8.2 Managing Projects
8.2.1 Creating a project
8.2.2 Enabling a project
8.2.3 Editing a project
8.2.4 Disabling a project
8.2.5 Deleting a project
8.2.6 Assigning a zone to a project
8.2.7 Configuring project quotas
8.3 Managing Nested Quotas
8.4 Managing Groups
8.5 Managing Users
8.5.1 Create a user
8.5.2 Add a user to a project
8.6 Managing Networks

9 Operations
9.1 Front Desk

9.2 Monitoring
9.3 Maintenance, Failures and Debugging
9.3.1 Cloud controller
9.3.2 Compute Nodes
9.3.3 Storage Nodes
9.3.4 Databases
9.4 Backup and Recovery
10 Cloud Facilities for Users
10.1 Images
10.1.1 Creating, selecting, sharing images
10.2 Instances
10.2.1 Choosing, creating flavors
10.2.2 Starting, deleting instances
10.2.3 Security groups
10.2.4 Taking snapshots
10.3 Volumes
10.3.1 Creating, attaching volumes
10.4 PaaS
10.4.1 Deploying a Juju bundle
12 References
13 Appendix - Installation of the Cloud Infrastructure

Requirements
13.1 Installing the MAAS server

13.2 Install Juju
13.3 Deploying the Cloud Infrastructure with Juju
13.4 Validation

1 INTRODUCTION

Deploying a cloud infrastructure allows sharing resources through virtualization, simplifying the
provisioning of storage and computing services, and providing cloud-based services.

This document presents the high level reference architecture for a federated cloud over multiple
regions, possibly managed by different organizations, that complies with the requirements set forth
in the document “Requisiti per la Cloud GARR” [1].

The architecture is based on the open-source OpenStack cloud technology, which is currently the de
facto standard. As it is typical with open-source solutions, the solution offers reduced investment and
operational costs and scalability without licensing limitations. However, building a cloud remains a
complex task, which requires the integration of several disparate components. To simplify the
process, reduce the required man-power, reduce risk and keep services always up to date, an effort
must be placed on using tools for automating the steps needed to create, implement and support a
production-ready OpenStack cloud. Below we outline an automation solution based on Juju [8].

2 CLOUD PLATFORM: OPENSTACK

OpenStack is a software platform for cloud computing, that consists in several interconnected
components which enable controlling groups of hardware processing, storage and networking
resources within datacenters. The platform can be managed either through a web-based dashboard,
or through a CLI, or through a RESTful API.

Dashboard

Compute Storage Services MNetwaork
Mowa Glance Cinder Swift Heystone Ceilomster Meutron

2.1 OpenStack Components

We list here the OpenStack components that are used.

Service Project Description
name
Compute Nova Manages the lifecycle of compute instances in an OpenStack

environment. Responsibilities include spawning, scheduling and

decommissioning of virtual machines on demand.

https://en.wikipedia.org/wiki/RESTful
https://en.wikipedia.org/wiki/RESTful
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/API
http://www.openstack.org/software/releases/liberty/components/nova
http://docs.openstack.org/developer/nova/

Networking Neutron Enables Network-Connectivity-as-a-Service for other OpenStack
services, such as OpenStack Compute. Provides an API for users
to define networks and the attachments into them. Has a
pluggable architecture that supports many popular networking
vendors and technologies.

Storage

Object Storage Swift Stores and retrieves arbitrary unstructured data objects via a
RESTful, HTTP based API. It is highly fault tolerant with its data
replication and scale-out architecture. Its implementation is not
like a file server with mountable directories. In this case, it writes
objects and files to multiple drives, ensuring the data is
replicated across a server cluster.

Block Storage Cinder Provides persistent block storage to running instances. Its
pluggable driver architecture facilitates the creation and
management of block storage devices.

Storage Clusters [Ceph Provides high-performance scalable block storage with advanced
features, replication, erasure coding, snapshotting, storage
tiering

Shared Services

Identity service [Keystone Provides an authentication and authorization service for other
OpenStack services. Provides a catalog of endpoints for all
OpenStack services.

Image service Glance Stores and retrieves virtual machine disk images. OpenStack
Compute makes use of this during instance provisioning.

Telemetry Ceilometer |Monitors and meters the OpenStack cloud for billing,
benchmarking, scalability, and statistical purposes.

Management Services

Hardware MAAS Help facilitate and automate the deployment and dynamic

Provisioning provisioning of hyperscale computing environments.

Service Modeling [Juju Service modeling, configuration and orchestration.

Orchestration Heat Orchestrates multiple composite cloud applications by using
either the native HOT template format or the AWS
CloudFormation template format, through both an
OpenStack-native REST API and a CloudFormation-compatible
Query API.

Container Kubernetes |Kubernetes is an open-source system for automating

Orchestration deployment, scaling, and management of containerized
applications.

Dashboard Horizon Provides a web-based self-service portal to interact with

underlying OpenStack services, such as launching an instance,
assigning IP addresses and configuring access controls.

7

http://www.openstack.org/software/releases/liberty/components/neutron
http://docs.openstack.org/developer/neutron/
http://www.openstack.org/software/releases/liberty/components/swift
http://docs.openstack.org/developer/swift/
http://docs.openstack.org/mitaka/install-guide-ubuntu/common/glossary.html#term-restful
http://www.openstack.org/software/releases/liberty/components/cinder
http://docs.openstack.org/developer/cinder/
http://www.openstack.org/software/releases/liberty/components/keystone
http://docs.openstack.org/developer/keystone/
http://www.openstack.org/software/releases/liberty/components/glance
http://docs.openstack.org/developer/glance/
http://www.openstack.org/software/releases/liberty/components/ceilometer
http://docs.openstack.org/developer/ceilometer/
https://jujucharms.com/
http://www.openstack.org/software/releases/liberty/components/heat
http://docs.openstack.org/developer/heat/
http://docs.openstack.org/mitaka/install-guide-ubuntu/common/glossary.html#term-heat-orchestration-template-hot
http://kubernetes.io/
http://kubernetes.io/docs/whatisk8s
http://www.openstack.org/software/releases/liberty/components/horizon
http://docs.openstack.org/developer/horizon/

Application Deployment

Marketplace Murano Supports easy deployment of Openstack ready-to-go Heat
recipies and Docker-based PaaS

Data Analytics Sahara To provision from the OpenStack GUI ready-to-go Hadoop
distributions (HDP, CDH, Spark, Storm, Hadoop) with native
up/down scalability and object storage integration.

Once OpenStack has been selected as cloud platform technology, a number of consequences arise
for the basic software to use:
e Linux Operating System (Ubuntu or CentOS) for server machines (virtual servers may instead
use different OSs)
e Linux Containers for internal virtualization: i.e. for the services running on the physical
servers)

3 SERVICE ARCHITECTURE

The logical service architecture is organized into the following layers, shown in Figure 1:
1. Physical: consists of the physical hardware and network resources
2. Operating System: corresponds to the services provided by the operating system
3. Virtualization: provides an abstraction of OS services through virtualization
4. Application Services: services provided by the platform
The services can be provided either directly by containers or on VM provisioned by OpenStack.

©
g I Paad
=
3 . K Fags
E ; (B0, LAMP)
E OpanSiack L..ln...-l...
"\.
B
E = | r 14 r P | |j
§|LmuuDuanU|m}U|unuLm
E
g Server
ol
Z
=
3
g
E
2

Figure 1. Logical Services Architecture.

The first level of virtualization is based on Linux Containers (LXD), VM or Bare Metal®. The OpenStack
modules and auxiliary components (database, HA proxy, etc.) are hosted on LinuX Containers placed
on physical servers (while staying independent) in order to create a highly reliable and load balanced
infrastructure. For example, as the need arises containers can be moved from one server to another.
The services by the automation tools (MaaS controller, Juju bootstrap node, DHCP) are hosted on
LXD containers as well.

All servers within a region, besides those assigned to provide backplane or control plane services, will
be typically dedicated to provide virtual machines for the projects.

4 FEDERATED ARCHITECTURE

OpenStack does not have native facilities for building federations among different Cloud Service
Providers. Only a blueprint [13] currently exists for exploiting Availability Zones in a federated cloud,
but the project has not yet started.

When it will become available, a more complex and more scalable solution might be the one
proposed by Tricircle [12], which offers a OpenStack APl gateway and networking automation to
allow managing several instances of OpenStack as a single cloud, scattered on one or more sites or in
a hybrid cloud.

The solution proposed here is based on a multi-region OpenStack model, which is practically feasible
assuming to federate cloud designed and implemented in a coordinated manner, based on
compatible OpenStack platforms.

The solution leverages the OpenStack mechanisms to scale to thousands of nodes and to expand
onto different data centers and geographical areas, exploiting in particular the concepts of Region
and Availability Zone.

Region 1 [Region 2

Come JC e

[Farsmns | [Glance L Hova]
¥T

i [Horiman] [_cinear [T |

T

J Availability Zone 2 Availability Zone 1

w | Availability Zone 2
i \
i
i
i

Figure 2. Example of Availability Zones in a multi-region architecture.

Region

! Linux Containers are preferable to traditional virtualization platforms (VM) since their execution
overhead is minimal, while they offer the portability of virtualization. On the other hand LXD may
provide a lower degree of isolation with respect to the host machine, but this has no impact on
security in our case, since the hardware and LXD level are only accessible for system administration.

Each Region has its own deployment of OpenStack, including endpoint API, network and computing
resources, which is linked to other regions using shared centralized services such as OpenStack
Identity and dashboard.

The concept of regions is flexible; it may contain OpenStack service endpoints located within a
distinct geographic region or regions. It may be smaller in scope, where a region is a single rack
within a data center, with multiple regions existing in adjacent racks in the same data center.

Availability Zone
Within each Region, nodes can be logically grouped into Availability Zones (AZ): when a VM is
provisioned, one can specify in which AZ the instance should be started, or even within which

specific node inside an AZ.

Host Aggregate
Within a Region machines can be grouped into Host aggregates. A machine may belong to
multiple Host aggregates.

4.1 Segregation and Sharing

The logic of the federation allows each organization to maintain control over the use of its resources,
which part to keep for private use and which part to give for sharing with the federation. Technically
this is done by associating to each region its own Keystone Domain, through which the local manager
will administers its resources.

4.1.1 Domains and Hierarchical Projects

Projects can be arranged in a hierarchy, whose root is a domain. Once you have a project hierarchy
created in keystone, nested quotas let you define how much of a project’s quota to give to its
subprojects. In that way, hierarchical projects can have hierarchical quotas (also known as nested
guotas). This feature is used to provide hierarchical multitenancy in the federation.

For example, one can have the situation shown in Figure 3, where two separate domains are
assigned to different organization. Each organization is organized internally into projects and
subprojects. Subprojects inherit role assignments, so for example the administrator for project
Marketing is also an administrator for sub-projects National and International. Through nested
guotas it is possible to control how the compute and storage resource can be divided among the two
subprojects.

- Cloud Provider

-« Coca-Cola Domain
- Marketing Project

- National sub-Project

- International sub-Project
- Sales Project

- Wholesale sub-Project

- Retail sub-Project
- Pepsi Domain
Project

Figure 3. Hierarchical projects.

10

http://docs.openstack.org/arch-design/multi-site-operational-considerations.html
http://docs.openstack.org/mitaka/networking-guide/adv-config-availability-zone.html
http://docs.openstack.org/admin-guide/dashboard-manage-host-aggregates.html
http://docs.openstack.org/mitaka/config-reference/block-storage/nested-quota.html
http://docs.openstack.org/mitaka/config-reference/block-storage/nested-quota.html
http://docs.openstack.org/mitaka/config-reference/block-storage/nested-quota.html

4.2 Central Authentication

The authentication and authorization services, however, are provided by a single central service that
exposes a single APl and a single web interface for the whole federated cloud. Since authentication
itself is performed in a federated form, users are globally recognized and therefore can be enabled to
use resources on the whole federation. For efficiency of access, the Keystone database will be
replicated in slave mode in each region. The authentication system allows the use of credentials
provided by Identity providers in the IDEM federation as well as OpenID Connect providers.

4.3 Architecture Overview
The main features of the federated architecture are:

e Replicability and scalability;

e Integration of resources managed by different organizations;

e High level of automation in deployment and maintenance;

o Elastic allocation of resources assigned to a service, exploiting resources shared by other
regions;

e Unified handling of authentication and authorization to access the federation;

e High degree of reliability, ensuring continuity in the services even in case of failures of
resources within a region and enabling procedures of disaster recovery in case of
unavailability of a whole region;

o Flexible security policies both at the resource and user levels.

The general architecture of the federation is shown in Figure 4. The architecture includes a Master
Region, that hosts all components required for managing the federation and the tools for automated
installation of the platform on dedicated resources, as well as a number of Regions that host the
OpenStack application services.

&

U

[

S

IS LN

Figure 4. Architecture of the multi-region federated cloud.

The required services present in the Master Region are:

e Compute (Nova)

e Networking (Neutron)

e Block Storage (Cinder)

e Image service (Glance)

e Object Store (Swift)

e Metering (Ceilometer)

e Authentication/Authorization (Keystone)

11

e Server management (MaaS)
e Service orchestration (Juju)
e Messaging (RabbitMQ)

e Dashboard (Horizon)

In particular the service of federated authentication is present only in the Master Region.
Services present in each Federated Region include:

e Compute (Nova)

e Networking (Neutron)

e Block storage (Cinder)

« Image Service (Glance)

e Object Store (Swift)

e Messaging (RabbitMQ)

e Metering (Ceilometer)

e Server management (MaaS)
e Service orchestration (Juju)

Notice that there is no separate Keystone in the regions.

These components are suitably replicated on each region for redundancy and reliability, as described
in the section on High Availability.

4.4 Public and Private Clouds

The federation can seamlessly use a number of public clouds (including Amazon Web Services, Azure,
Google Compute Engine, Joyent and Rackspace) to deploy workloads, as well as private clouds (e.g.
OpenStack) which you configure. This is achieved by means of the cloud facility in Juju.

4.5 Architecture Design Criteria
In designing the reference architecture we applied the following criteria.

4.5.1 Cloud controller

The cloud controller provides the central management system for multi-node OpenStack
deployments. Typically the cloud controller manages authentication and sends messages to all the
systems through a message queue. For our example, the cloud controller has a collection of nova-*
components that represent the global state of the cloud, talk to services such as authentication,
maintain information about the cloud in a database, communicate with all compute nodes and
storage workers through a queue, and provide API access. Each service running on a designated
cloud controller may be broken out into separate nodes for scalability or availability. It is also possible
to use virtual machines for all or some of the services that the cloud controller manages, such as the
message queuing.

In this reference architecture, we used three cloud controller servers to host the OpenStack
management services.

4.5.2 Database
Most OpenStack Compute central services, and also the Nova compute nodes, use the database for

12

https://jujucharms.com/docs/2.0/clouds

stateful information. Loss of database availability leads to errors. In our deployment the database is
arranged in a High Availability cluster to make it failure tolerant.

4.5.3 Message queue

Most OpenStack Compute services communicate with each other using the Message Queue. In
general, if the message queue fails or becomes inaccessible, the cluster grinds to a halt and ends up
in a “read only” state, with information stuck at the point where the last message was sent.
Accordingly, the message queue is clustered, exploiting RabbitMQ built-in abilities.

4.5.4 Images

The OpenStack Image Catalog and Delivery service consists of two parts: glance-api and
glance-registry. The former is responsible for the delivery of images and the compute node uses it to
download images from the back-end. The latter maintains the metadata information associated with
virtual machine images and requires a database.

The glance-api is an abstraction layer that allows a choice of back-end used when providing storage
for deployment images.

4.5.5 Dashboard

The OpenStack Dashboard is implemented as a web application accessed through a web browser.
Because it uses the service API’s for the other OpenStack components it must also be able to reach
the API servers (including their admin endpoints) over the network.

4.5.6 Authentication and authorization

OpenStack authentication and authorization rely on the concepts of users, projects and roles. Users
are authenticated by submitting their credentials, and they can be assigned roles in one or more
projects (previously called tenants), with access subject to role based control (RBAC). Domains allow
defining administrative boundaries for managing resources. Authentication can be delegated to
trusted Identity Providers, including those in the IDEM federation and those based on OpenID
Connect.

4.5.7 Network requirements

Because the cloud controller handles so many different services, it must be able to handle the
amount of traffic that hits it. This reference architecture specifies 10GbE NICs for all network
connections between the server and the network switch. Each server must have at least two NICs.

4.5.8 MAAS and Juju
MAAS (Metal As A Service) is a tool that helps managing physical infrastructure with the same ease
and flexibility as virtual machines in the cloud. Specially, MAAS allows one to:

e Discover, commission and deploy physical servers

e Dynamically allocate physical resources to match workload requirements.

e Retire servers when they are no longer needed and make them available for new workloads
as required.

MAAS is responsible for hardware discovery and for installing the OS, making basic hardware
configurations and allowing servers to be recognized by network and system management software.
When a new node boots up, MAAS steps in, supplies it with all the required information and provides
an OS image install. This is done via PXE and DHCP. MAAS provides both a web interface and an API

13

to manage bare metal systems under its control.

MAAS works in conjunction with Juju. Juju is a service orchestration tool which allows the
administrator to configure, manage, maintain, deploy and scale cloud services (workloads) quickly
and efficiently on public clouds as well as on bare metal, leveraging MAAS to control the hardware.
Juju uses descriptions of services called Charms which understand how to deploy and scale a variety
of complex architectures like OpenStack. Juju can be controlled via a web GUI, the command line, or
API.

4.6 OpenStack Reference Architecture
The architecture design allows for a medium- to large-size cloud installation that scales well. Adding
additional compute capacity is as simple as adding additional compute nodes.

4.6.1 Logical model
For scalability and resilience the critical components are replicated a number N of copies, with N > 2,
placed in distinct Availability Zones.

This reference architecture is implemented around the following logical model:

o The controller nodes run the Identity Service, Image Service, Networking Service, dashboard,
databases, messaging system and the management portion of Compute, Block Storage, and
Object Storage services.

The Neutron networking service is deployed on N dedicated networking nodes.
Provisioning is implemented by a node that runs a cluster of two Maa$S Region controllers
and a Maas Cluster controller (one for each region)

e The compute nodes run the hypervisor portion of Compute, which operates project virtual
machines. By default, Compute uses KVM as the hypervisor. Compute also provisions and
operates project networks and implements security groups.

Object Storage is provided by an N node storage cluster.
The Object Storage configuration supports both object and image storage. Glance images are
stored in the object store.

® Block storage is allocated on N separate storage nodes.

Both block and object storage can be scaled by adding additional storage nodes and/or storage
volumes.

The logical architecture and the network topology is presented in Figure 5.

14

O_ Firewall Load Balancer
]
Controller node I Provisioning Menitoring N . o
] i] [maas Reg. | E i node
Harizan Cinder AR .
[Kaysiona] [Glance] [L]C::. Prometheus I Meutron | nstance g
[RabEIMD] Nﬂ::-i:::;l [mc""F] Il_nq []
S:E:;f" crl] [DS] [Cedlomater]
))| |
L T —

Storage

Geph OS50

— AP natwark
I:I Noda Management netwaork
_ — Storage network
D MVl ar — Data network
3 vm External network
— IPMI network

Figure 5. Reference Architecture for OpenStack.

Since deployment of components is assigned to Juju, as described later, the grouping of components
shown in the figure is purely logical and does not correspond to a specific placement onto physical
nodes (except for storage nodes). The number of replicas of each component is chosen for
redundancy and load balancing and are assigned arbitrarily to different nodes. In other words, where
the figure shows multiple nodes, this means that the components in those nodes are replicated on
different nodes as many times as the nodes. The replicas in color are configured for
High-Availability.

4.7 Networking
The reference architecture requires the availability of at least two separate physical networks:

1. One net for IPMI (network for controlling the physical devices);

2. One net for data traffic.

The following logical networks, isolated at level 2, are overlaid over the data networks for handling
different classes of traffic:

1. Management network: private network for communication among the core OpenStack
services. This net conveys the service traffic of OpenStack (messaging between modules,
database access, etc.);

2. Storage access network: private network used for traffic among storage nodes and compute
nodes;

3. API network: public frontend network for the control plane services of the cloud (access,

15

dashboard, etc);

4. Data network: private network managed by the OpenStack networking service in order to
isolate the traffic of different user groups (OpenStack projects);

5. External network: public network managed by the Openstack networking service providing
external access to the virtual instances.

The networking service in OpenStack (Neutron) provides outward connectivity to virtual resources.
The separation of traffic between the various projects is achieved by means of an OpenFlow
controller: within the physical hosts, the gateways of private project networks are connected to
virtual Neutron routers, kept within separate VLANs and segregated into separate netspaces; the
traffic between physical hosts is kept separate by means of the VXLAN/GRE overlay networking
protocol.

This mechanism, combined with a configuration that allows interconnecting the internal OpenStack
networks, allows communication between instances of projects within different federation regions,
i.e. this allows associating a non local compute node to the control panel of a region.

Nodes are externally reachable at floating IP addresses allocated in the address space of the external
network (public project, of flat type) by a NAT router.

Networking nodes (Neutron) are deployed on dedicated physical servers. Redundancy of virtual
networking is achieved through L3 agents in high availability managed by Neutron.

4.8 Storage

In a cloud environment three types of storage are used:

Object storage, which treats data as “objects”, with associated metadata to describe them.
Block storage, which organizes data as blocks of sectors and tracks, emulating a physical hard
disk.

e File storage, which organizes data in a directory hierarchy.

4.8.1 Object Storage

An Object storage is basically a key/value store where the key is a positive integer: the ID of the
object. They are suited for storing massive amounts of unstructured data, since they provide great
scalability and rely on relatively inexpensive hardware.

In OpenStack, object storage is typically used for storing backups and virtual machine images (via
Glance).

Swift is commonly used to provide object storage in OpenStack. But since our Reference Architecture
contemplates the use of Ceph, which provides both block and object storage, Ceph is used for both
types of storage, exposing both a Swift and S3 API through a Rados Gateway.

4.8.2 Block Storage
Block storage in OpenStack is provided by the Cinder service, which abstracts storage provided via a
number of block storage backend, from LVM to Ceph.

4.8.3 Distributed File Storage

The current architectural design does not include the provisioning of distributed file storage. Smallish
sites can rely on sound technologies like GlusterFS or NFS, with HA possibly being guaranteed via
Pacemaker/Corosync. For larger installations, besides commercial solutions (like GPFS, Lustre,

16

https://en.wikipedia.org/wiki/Object_storage
http://glance.openstack.org/
http://docs.ceph.com/docs/bobtail/radosgw/
https://wiki.openstack.org/wiki/Cinder
https://www.gluster.org/

Quobyte), the most natural choices are OpenStack Manila and CephFS, once they will become
mature enough.

4.8.4 Ceph

Ceph exploits inexpensive hardware (JBOD) to provide a high-performance scalable storage with
advanced features, such as replication, erasure coding, snapshotting, storage tiering. Ceph can supply
storage in the form of either object, block or file storage.

Ceph requires two sets of servers:

e monitor (MON) servers, which need to be in odd number (typically 3): these servers
maintain, and serve to clients, global information about the configuration and health of the
cluster. Clients reach MON nodes through routers, but data transfers occur directly between
clients and OSD servers.

® OSD (Object-based Storage Device) servers, which are the nodes serving the disks. They are
connected to the Storage network, as well as to a private high capacity network, where
replication traffic flows. To achieve maximum performance, a JBOD configuration is
preferable to using RAID.

One independent Ceph cluster is present in each region: we are currently at the Jewel release.

In our setup, each computing rack hosts both CPU resources and storage. Storage is provided by a
FC-based SAN, which (lacking a global FC switch) can be accessed only by machines within the same
computing rack. Moreover, each computing node is equipped with huge resources in terms of CPU
and RAM. For all these reasons we decided to configure Ceph using “fat nodes”, namely each OSD
serves a large number of disks. Within each rack, one physical server is configured as OSD, to which
storage disks are presented. Ceph monitor (MON) nodes are installed as LXC containers on each OSD
server (one MON per physical OSD server, 3 in total for a given site). In the near future, we will
expand our Ceph installations along two directions:

e add functionalities, for example deploying CephFS (providing distributed filesystems)
e define, possibly on the same physical nodes, a secondary cluster, spanning all three regions

The relevant additional servers, where needed, will also be installed as containers on the OSD nodes.

Installation and configuration of OSD and MON nodes is performed using ceph-ansible: this makes
routine operations, like adding more disks, very simple and error-proof. Disks are normally configured
with the journal residing in a small partition on the same disk. As soon as the Bluestore technology
will be declared production-ready, we will switch to it.

Ceph allocates bits of data according to so-called CRUSH maps. The default configuration for CRUSH
map has been modified in two respects:

e we have a separate entry point (‘root bucket’, in Ceph terminology) for each kind of disk,
currently three: SSD (root=ssd), single SAS disks (root=default), large disks (root=big, these
are RAIDO spanning 2 SAS disks)

e we introduced a new bucket type, called ‘storage’, sitting right below the ‘host’ bucket, to
reflect the fact that in our installation there are two independent storage systems within
each rack. Each storage system is actually composed of two distinct enclosures, but we

17

http://ceph.com/
https://github.com/ceph/ceph-ansible
http://docs.ceph.com/docs/master/dev/bluestore/
http://docs.ceph.com/docs/master/rados/operations/crush-map/

decided not to go to such level of detail.

By managing the CRUSH maps we can optimally place Ceph pools. Normally we configure ‘fast’ pools
on SSD disks with replica 2, ‘regular’ pools on HDD disks with replica 3 while ‘erasure-coded’ pools
are backed by ‘big’ disks.

Erasure-coding is roughly a generalization of the RAID6 concept. Each data block is split into k data
and m parity chunks, which are stored into separate disks: k chunks are enough to reconstruct the
information, and the system can tolerate the loss of up to m disks. With respect to replica 3, erasure
coding provides even higher levels of data availability at only a fraction of the cost. Our setup uses
4+2 erasure coding, which reduces the overhead of wasted space for replication to just 50%, rather
than 200% for the 3-replica pools. Erasure-coding is used for object storage pools, needed by the
Glance and Swift services. Erasure-coding could be used for block devices too, provided a replicated
pool is used in front of it: however, the performance penalty for such a configuration is rather high
and it was not deemed appropriate to our use case.

Each cluster has three physical OSD servers, in distinct racks: as such servers have 4 10 Gbit/s
interfaces, network traffic for each of the public and private networks flows through distinct
bondings of two 10 Gbit/s interfaces. Disks are picked from the two storage systems and presented
individually to the server as RAIDO (this is the closest approximation to JBOD that the storage systems
in use at GARR can achieve). Each OSD server has access to a limited quantity of disk space on SSD
disks which is used for hosting Ceph journals and to build a high-performance pool on which to
create volumes to be used as tiered storage or for extremely demanding applications. Monitor nodes
are installed as an LXC container on each OSD server.

4.9 Users and Access Authorization
The mechanisms for authorizing access to resources are based on these concepts:
® A Project (formerly known as tenant) owns a set of resources (servers, storage, etc.).
® A User represents an individual entity and belongs to a single Domain.
® A Group represents a collection of users within a single domain. Users in a group inherit the
roles assigned to the group.
® A Role includes a set of rights and privileges. A User assuming a role inherits its rights and
privileges.
e Domains are a collection of projects, users, groups and roles® that define administrative
boundaries for managing resources.

Users or Groups are given access to a Project or to a Domain by assigning them a Role on such
Project or Domain. Roles determine the type of access and capabilities the User or Group is entitled
to.

A role assignment is a triple: the combination of an actor (either user or group), a project (domains
are a special case of projects) and a role. For example the role “admin” is assigned to the user “bob”
and is assigned on the project “development”.

Users can be associated with one or more projects by granting them roles on a project, including
projects owned by other domains. A user may hence have a different role in different projects.

2 Since Mitaka.
18

By default, there are two predefined roles: a Member role that gets attached to a project, and an
Admin role to enable administering a domain.

The Cloud administrator can manage domains, projects, users, groups and roles of the whole cloud.

The administrator can add, update, and delete projects and users, assign users to projects, and
change or remove the assignments. To enable or temporarily disable a project or user, he can update
that project or user. He can also change quotas at the project level.

Users can be granted the administrator role for a domain. A Domain administrator can create
projects, users, groups and roles in a domain and assign roles to users and groups in that domain.

The following Figure illustrates the various concepts. Roles are represented by arcs of different
colors. Userl has the Admin role for the whole Domain A. User2 has access to both Projl and Proj 2.
User3 belongs to Domain A, but it is granted the role of Member also on Proj4 in Domain B.

Domain A Domain B

| ||
| X Foit

Group1 Group2

§
i

TN

Coron

Roles

— Admin
»>— Member

Figure 6. Users, roles, projects, domains.

In the Mitaka release of Keystone v3, projects and users are domain-specific, roles can optionally
be domain-specific, while services and endpoints are Keystone-instance-wide.

Projects can be nested, inheriting resources from their parents and dividing them among siblings.

4.10 Authentication and Authorization

We designed the Authentication and Authorization mechanism in the federation so as to fulfill the
following requirements:

1. Separation of roles, between the cloud administrator and the domain administrators. The
cloud administrators create the domains and assign resources to them, the domain
administrators are delegated to fully administer their domains, creating projects, users and
groups and assigning roles to users and groups on projects.

2. The federated Identity providers are delegated only for authentication and they need just to
provide sufficient properties in order to identify uniquely a user (typically through an email
address)

3. No authorization information should be stored outside of keystone, in order to avoid:

19

a. Having to check reliability and consistency of such information
b. Having to map it to internal keystone entities
c. Force users to act on an IdP not under their personal control

4. Users can be granted rights on any project of the federation, irrespective of their affiliation
and under the sole control of the administrator for that project

5. Deploy the simplest solution, relying as much as possible on native OpenStack capabilities
avoiding any extra non necessary component.

The following describes the chosen solution for federated authentication and authorization.
Users of the federated cloud must have an identity provided by a trusted Identity Provider.
Currently the accepted Identity providers are:

® |dPs participating to the IDEM [2] federation, which will typically be the IdP of the
organization to which the user belongs (Home Organization).
® An OpenlD Identity Provider (e.g. Google).

Enabling federated authentication entails:

1. Configuring OpenStack Keystone for Federation

2. Enabling the federation protocols, currently just the two major ones:
a. SAML implemented by Shibboleth, see Setup Shibboleth;
b. OpenlID Connect, see Setup OpenlD Connect.

The external Identity Provider is responsible for authenticating users, and communicates the result of
authentication to keystone including their identity properties. Keystone maps these values to
keystone user groups and assignments created in Keystone by each Domain Administrator.

The details of the interaction between the Federated Keystone and the actors in the identity
federation are described in the following Figure.

Ty -
=
bl Federated Cloud \\"
@ 8P t—-—-_______________
ma— T z Cloud
£| Platiorm
s y L cioc gp Services
QIDC / "
o — - /

Figure 7. Federated Authentication.

4.11 Monitoring

The monitoring system is charged of providing exhaustive information about the performance of the
whole federated cloud, in terms of resource allocation and consumption (CPU/disk/memory), per
region, per computing node or per instance. Data from the monitoring system must be analyzed for
detecting capacity usage and trends. The monitoring system must integrate easily with existing

20

http://www.idem.garr.it/
http://openid.net/
http://docs.openstack.org/developer/keystone/federation/federated_identity.html
http://docs.openstack.org/developer/keystone/federation/shibboleth.html
http://docs.openstack.org/developer/keystone/federation/openidc.html

monitoring tools installed on the nodes, like Ceilometer and other data collectors.

Monitoring the operations of the cloud platform is performed at several levels, using the following
tools.

4.11.1 Hardware Monitoring
e Monitoring the hardware infrastructure. Performed by means of Zabbix, an open-source
monitoring tool, that provides both agent and agent-less data collection. Zabbix provides
data storage, graphical visualization, alarm handling, email notifications and it allows defining
customized metrics.

4.11.2 Troubleshooting
® Log collection and analysis. Performed by means of Monasca, a monitoring-as-a-service
solution, and ELK (ElasticSearch, Logstash, Kibana), a platform for the collection, analysis and
display of log data from various sources. Logs from all levels of the cloud can be analyzed,
from the infrastructure level (network equipment logs) to operating system and application
logs.

4.11.3 Software Monitoring
e Update management. Performed by means of Katello, which checks for the availability of
upgrades for the packages installed on the servers, in particular those critical for solving
security problems, and sends email notifications to the administrators when this occurs.
Administrators can use its web interface to control the installation and removal of packages.
e Monitoring and alarm handling of containers that host the OpenStack services. Performed by

means of Prometheus, a monitoring and alerting toolkit.

The monitoring and alarm system focuses on events that may prevent the proper operation of user
resources and how malfunctions may impact other resources in the cloud.

4.11.4 Metering and Billing

Metering of resource consumption up to the user/project level is performed by means of Ceilometer
[ref. http://docs.openstack.org/developer/ceilometer/architecture.html], according to the scheme
presented in Figure 7.

AP
milnimaline Bus ‘
-

- 1

-~ | - I

Lhrect polling

Collecior

Aot atioe

bim

Swift

MNova
Compute

Figure 8. Scheme of Ceilometer operations from notifications to data publishing.

Ceilometer delivers a Single Point Of Contact for billing systems, providing all the counters they need
to establish customer billing, across all OpenStack components.

21

http://www.zabbix.com/
http://monasca.io/
http://www.katello.org/
https://prometheus.io/
https://wiki.openstack.org/wiki/Telemetry
http://docs.openstack.org/developer/ceilometer/architecture.html

The Aodh Alarming service is a Ceilometer sub-project that provides a more general alarm
mechanism. AODH provides instant response times by specifying a separate event listener on the
OpenStack message queue. This listener emits an alarm when a pre-defined event pattern occurs, an
alarm which, in turn, enables immediate issue detection and possible response.

Charging the costs of resources used, it is split into three parts: metering, rating and billing. Billing is
assigned to Ceilometer, configured to work in pipeline, streaming data to Gnocchi as a publisher,
which aggregates them and stores them in a time series database and uses a database for indexing
them and allowing queries on resources usage over time, over projects and over resources.

Rating could be performed by means of CloudKitty, which allows to set pricing for various types of
resources, including volume or other type of discounts, through a plugin on the Horizon Dashboard.

4.12 High Availability

Within each region, for redundancy and reliability, the following nodes are replicated:

e 2 copies of the monitoring nodes
® 2 copies of the provisioning nodes, including two Juju bootstrap nodes
e 3 copies of OpenStack (?)

Come subentrano l'un l'altra?

The GARR Cloud setup is based on a logical HA model. Such a deployment uses a minimum of five
nodes, and uses a variety of methods to ensure HA. This section covers the standard and
recommended HA model.

In order to guarantee high availability and continuous operations, three instances of each service are
deployed in the physical infrastructure. The following diagram shows the relations among the
instances of services.

[ha proxy] Dedicated VIP per
servios
P Pacemaker/Corosync

Load Balancing

Horizon
MNaova AP|
Cinder AFI

Activelinactive al AP
Keystona API

Cailormenter AP

e ssnon <>
SQL DB Rerlication S0L DB Percona Chustar
RabbithQ = Mirrored Queue = Rabbithd Rabbith Cluster
. = ReplicaSat = -ll" MongoDE Cluster
- & Py
MAAS Servar Postgres SOL

Figure 9. HA model.

2

N

https://jujucharms.com/aodh/
https://docs.openstack.org/developer/gnocchi/
https://wiki.openstack.org/wiki/CloudKitty

[llustrare I'uso di DNS e proxy

Replicazione DB Juju

4.13 Security
® OpenStack services hosted on LXC: iptables on physical hosting nodes
e Sulle VM: Neutron security groups (iptables)
e ACL on the frontier router

Gestione chiavi e certificati?

23

5 ORCHESTRATION AND AUTOMATION

In this section we describe the automation techniques used for the installation, deployment and
maintenance of the cloud platform and the deployed services, starting from the hardware resources,
according to the architecture presented in Figure 4.

5.1 Automation Tools
We introduce briefly the automation tools used.
5.1.1 MaaS

Metal as a Service — MAAS — allows treating physical servers like virtual machines in the cloud. Rather
than having to manage each server individually, MAAS turns bare metal into an elastic cloud-like
resource.

MAAS can automatically boot machines, check the hardware and have them ready for use. Nodes
can be pulled up or teared down just as with virtual machines in the cloud. MAAS can be a provider
for Juju, providing the nodes it needs to power a service.

5.1.2 Juju

Juju is open source tool for automation and service orchestration. Juju has two components: a
bootstrap node and a client present in each administered node. Juju uses a Postgres database for
storing the state of configurations, which must be subject to HA.

Juju allows you to model, configure, manage, maintain, deploy and scale cloud services quickly and
efficiently on public clouds as well as on Maa$S, OpenStack, and LXD containers.

Service modelling allows quick and easy deployment and management of services (whether it’s a
cloud infrastructure like OpenStack, or a workload such as Hadoop), connecting those services, and
quickly scaling them up or down, all without disruption to the cloud environment.

Juju provides dynamic configuration, which allows re-configuring services on the fly, adding,
removing, or changing relationships between services, and scaling in or out.

Once a client Juju has been installed, Juju environments can be bootstrapped on different providers,
which can be cloud services from multiple vendors. For local installation, in our case the provider
used is Maas.

Juju is responsible for orchestrating services to be installed according to a high-level description in
terms of charms (deployment recipes of a single service) or bundles (aggregations of charms in
relation to each other). For each service, based on the architecture of figure 1, Juju takes care of:

e Deploying the service
e coordinate Event based reactions (e.g. elasticity of resource allocation in case of overload)
e integrating services among themselves

24

https://juju.ubuntu.com/
https://juju.ubuntu.com/
https://juju.ubuntu.com/
https://en.wikipedia.org/wiki/Orchestration_(computing)

Charmg store

Charm | Charmz | | Sharmd |

e -

Juju Environment
State service
I ' [
Clwarsil L J Chiaid |
[E 0] L= 1 Lnd 0
= N .
‘ | : Agent : agant |
I | Machine 1 Machine 2 h ,
I [
b] | f '
T I |
h |
T b
| h |
| MAAS hachine n |
|
I
1

Figure 10. Juju architecture.

The Juju Charm Store (http://jujucharms.com) offers a wide range of charms and bundles for

deployment of services on LXC, bare metal or KVM on a private, public or hybrid cloud.

For example, using a Juju charm it is possible to provision a PaaS service like WordPress, which uses a
MySQL backend on a cluster. The service requires three types of nodes: load-balancing, WordPress
(Apache/PHP) and MySQL database. Using the Juju charm, the user describes the number of nodes
for each service, their dimensions (CPU, RAM, etc.) and how the nodes are related. The charm is sent
to the bootstrap node, which interacts with OpenStack to implement the application. The process is
shown in this figure:

OpenStack APls

3. Provision load
1. Iwant fo create a balancer, application,

‘WordPress cluster. o and database nodes. [em @ m]

—— Shared services
—] Meutron Nova Cinder
2. OK. | will start brzzzzocd 4. OK. | will start X ﬁ %
the process. Bootstrap the process. Networking || Compute Storage

VM

Figure 11. Provisioning a Paa$S through Juju.

OpenStack carries out the tasks requested to it through the bootstrap node and deploys the
requested virtual infrastructure. The bootstrap node, once the VMs are available, starts a process
outside of OpenStack to complete the installation. From now on, OpenStack simply provides the
virtual infrastructure without being aware of the application roles assigned to each node.

Juju can also drive other configuration management tools, such as Puppet and Ansible.

5.1.3 Ansible
Ansible is an automation tool based on Python and YAML capable of performing configuration and

25

http://jujucharms.com/

maintenance tasks in parallel on multiple machines. Ansible is used as a maintenance tool for specific
changes both at physical server level and at the control plane service level.

6 BUILDING THE CLOUD

6.1 Installation of the Cloud Platform
Installing the cloud platform involves these steps:

1. Bare Metal provisioning with MAAS.
2. OpenStack provisioning with Juju.

For the details of these step we refer to the appendix.

6.1.1 Bare Metal Provisioning

To meet the requirement of being able to carry out (cross data center) bare metal provisioning with
a unified management via either GUI or API, we opted for the tool Maas (Metal-as-a-Service [9]) by
Canonical.

Maas integrates the FTP/PXE boot service, and optionally the DHCP and DNS services, according to
the back-end architecture shown in Figure 12.

A Region Controller in HA is present in each region, which exposes the administrative functions
through both an API and a Web GUI. Physical resources are organized in clusters, each managed by a
Cluster Controller.

Raglon corbrallsr
‘ WEE LI }— Highly Availabig ~| AP

I

~, - "

Cluster Clustar Clustar
Chustar Clustar Clustar
Cantraller Conrollar Controllar
TFTE, OHCF FEE) TFTF, DHCE [FRE TETF, BHCH |FRE

Figure 12. Scheme of Bare Metal provisioning in a region of the federation.

The Region Controller is configured in high availability and through the cluster controller orchestrates
via DHCP and TFTP (PXE boot) a group of machines of which it takes charge:

26

e Enlisting the hardware
e Commissioning the machines
e Provisioning them

6.1.2 OpenStack Provisioning
Provisioning di OpenStack is done by means of Juju.

ESPANDERE
| charm di deployment sono disponibili su GitLab:

https://gitlab.global.garrservices.it/csdmgr/openstack-juju

6.2 Application Services Provisioning
The provisioning of application services is done by means of Juju.

ESPANDERE
The repository of the GARR bundles for Juju is available on GitLab:

https://gitlab.global.garrservices.it/csdmgr/openstack-juju

27

https://gitlab.global.garrservices.it/csdmgr/openstack-juju

7 BUILDING A REGION

Building a Region involves the following steps:

1. deploy MAAS/Juju/OpenStack on the group of servers and storage units that will form the
region.

2. add a Keystone endpoint for the region. The URL should be that of the Keystone endpoint in
the master region.
Even better: force a keystone replica to a region node.

3. assign Availability Zones to the compute nodes.

4. Create domains with quotas set to given Availability Zones and Volumes?

The logical infrastructure is shown in the following figure:

Main Rieglon Federated Region
MAAS Maim Juju Man Juju Fed BULAS Fod
Q% Main 08 Fed
— Kyt ———————

f

Animteiy Bssnrity Animtiy
Tons i T § Tors &

Cle el et
Each region has its own installation of MAAS/Juju/OpenStack: they share a single Keystone. Users
interact through Horizon or the Keystone API, requesting services according to their credentials. A
user can be enabled for example to access both Availability Zone 1 and Availability Zone 3, according
to the projects to which he is associated. Hence he can ask to start instances on either of those
zones.

Volumes are provided through separate Ceph/Cinder on each region: hence volumes can be created
on them and associated to an instance.

We need to figure out how a user can specify which Cinder to use.

Deploying PaaS with Juju

The architecture supports the deployment of PaaS through Juju as follows. A user can connect to the
Juju client or GUI set with env:openstack, and asks for the deployment of a Juju bundle. For example
an Hadoop bundle can be deployed, setting the number of nodes in the requested cluster, the
volume sizes. Juju takes care of interfacing to the OpenStack clouds for provisioning the VM and
installing the application packages on them.

7.2 Isolating Volumes among projects
Restricting volume access to projects within a region can be done as follows.

http://www.hitchnyc.com/openstack-multi-tenant-isolation/

28

http://www.hitchnyc.com/openstack-multi-tenant-isolation/

Create new aggregate for new tenant

$ nova aggregate-create <name>

Take note of the ID of the aggregate just created.

Add hosts to new host aggregate
Add hosts to aggregate, one command for each host. Use the ID from the aggregate just created
above.

$ nova aggregate-add-host <aggregate name> <host name>

Example:

$ nova aggregate-add-host <aggregate name> computeOl
$ nova aggregate-add-host <aggregate name> compute02
$ nova aggregate-add-host <aggregate name> compute03

Update host aggregate metadata

This step adds the project ID filter to the host aggregate, which will tell Nova Scheduler to restrict
access to this host aggregate based on the project ID supplied.

Update aggregate metadata to include project ID filter:

$ nova aggregate-set-metadata <aggregate ID> filter tenant id=<project ID>

Create new flavor to include project ID filter

$ nova flavor-create <flavor name> <id> <ram> <disk> <vcpus>
$ nova flavor-key <flavor name> set filter tenant id=<project ID>

Apply project quota for volume types

Cinder allows defining block storage based volume types. These volume types can be tied to
separately defined Cinder backends. The process is explained here.

Update default project quota to allow and/or restrict a particular volume type.

Grant access rights
To allow access to a volume type:

$ cinder quota-update --volumes 100 --volume-type netapp US <project ID>

To restrict access to a volume type:

$ cinder quota-update --volumes 0 --volume-type netapp US <project ID>

Workout:
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/multi-tenant-isol
ation-quarantine-your-tenants

https://github.com/wbentley15/os-summit-multitenant-wk/blob/master/multi_tenant_iso_lab.txt

7.3 Managing availability zones

An OpenStack availability zone is a logical partition of hosts or volume services within a single
OpenStack deployment. Compute service availability zones are defined at the host configuration

29

https://wiki.openstack.org/wiki/Cinder-multi-backend
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/multi-tenant-isolation-quarantine-your-tenants
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/multi-tenant-isolation-quarantine-your-tenants

level, providing a method to segment compute nodes by arbitrary criteria, such as hardware
characteristics, physical location, or task designation.

To create an availability zone in OpenStack, run the following steps:

1. On each Compute Node that you want include in the availability zone, add the following statement
inthe /etc/nova/nova.conf:

node availability zone=availability zone name
2. Run the following commands:

$ service openstack-nova-metadata-api restart
$ service openstack-nova-compute restart

For more information about the OpenStack services, see the OpenStack documentation.

30

http://docs.openstack.org/grizzly/

8 ADMINISTERING THE CLOUD

8.1 Managing a Domain
Domains represent a team or an organization in a multi-project environment. The Cloud
Administrator can perform the following steps for on-boarding a team in this environment.

8.1.1 Overview

1. Create a domain resource. This step automatically creates a default project for the domain to
facilitate user on-boarding.

2. Ensure that the domain has access to at least one deployment availability zone. This allows users
in that domain to access virtual images and deploy virtual servers when logged in to the domain
projects. The availability zones that are assigned to the domain are then visible to be assigned to
projects within the domain.

3. To delegate the domain administration, ensure that at least one user is assigned to the domain
with domain_admin role. With this role, the Cloud Administrator can delegate the administrative
tasks of the domain to the Domain Administrator who can then start creating projects and
assigning users.

8.1.2 Creating a domain
The Cloud Administrator creates domains to organize projects, groups, and users.

GUI

Log in to the OpenStack Dashboard as the Cloud Administrator.

In the left navigation pane, click IDENTITY > Domains. The Domains page opens.

Select Create Domain. The Create Domain window is displayed.

Specify the domain name and, optionally, the domain description.

Optional: Clear the Enabled check box to disable the domain. If the domain is disabled, the
Domain Administrator cannot create, update, or delete resources that are related to the domain.
New domains are enabled by default.

6. Click Create Domain.

S

CLI

S openstack role add --domain <domain> --user admin Admin
$ openstack domain create --description "description" <domain>

The second step is required in order to ensure that the cloud administrator can manage the new
domain.

8.1.3 Assigning a zone to a domain
Assigning a zone to a domain enables users in a domain to access the resources available within a
zone.

GUI

1. Log in to the OpenStack Dashboard as the Cloud Administrator.

2. Open the domains page by clicking IDENTITY > Domains in the navigation pane.

3. In the domains page, find the entry for the domain and click the arrow icon in the Actions column.
Then click the Edit option to open the Edit Domain window.

4. Click the Availability Zones tab. The Available Zones and the Assigned Zones are listed in the

31

following format: Zone Name - Region Name

5. To assign a zone to a domain, from the list of Available Zones, click the plus button beside the
zone name. The selected zone moves to the Assigned Zones list. To return an Assigned Zone to
an Available Zone, select the minus button beside the zone name. Use the Filter field to search
for specific zones.

6. When you have assigned all zones, click Save.

CLI

$ openstack domain create --description "description" <domain>
S openstack role add --domain <domain> --user admin Admin

8.1.4 Managing Domain Quotas

The Cloud Administrator can manage quotas for a domain, specifying the maximum amount of a
certain resource that is available to the domain. The Domain Administrator can then distribute that
guantity among all the projects in the domain.

Using the command-line interface, the administrator can manage the following types of quotas.

e Compute service quotas
o Set Compute quotas for a domain

$ openstack quota-set --QUOTA_NAME QUOTA VALUE <domain>

For example, to set the maximum number of instances to 20, issue:

$ openstack quota-set --instances 20 <domain>

To see the current quotas values, do:

$ nova quota-show --tenant <domain>

T T ommm - +
| Quota | Limit |
R FRRE +
instances	10
cores	20
ram	51200
floating ips	10
fixed ips	-1
metadata_items	128
injected files	5
injected file content bytes	10240
injected_file_path_bytes	255
key pairs	100
security groups	10
security _group_rules	20

| server_groups | 10 |
| server group_members | 10

T 4mmmm - +

e Block Storage service quotas
o View Block Storage guotas
o Set Block Storage service quotas

32

http://docs.openstack.org/admin-guide/cli-set-quotas.html
http://docs.openstack.org/admin-guide/cli-set-compute-quotas.html
http://docs.openstack.org/admin-guide/cli-set-compute-quotas.html#view-and-update-compute-quotas-for-a-project-project
http://docs.openstack.org/admin-guide/cli-cinder-quotas.html
http://docs.openstack.org/admin-guide/cli-cinder-quotas.html#view-block-storage-quotas
http://docs.openstack.org/admin-guide/cli-cinder-quotas.html#edit-and-update-block-storage-service-quotas

e Networking service quotas
o Basic quota configuration
o Configure per-project guotas

8.1.5 Editing the domain quotas

The Cloud Administrator can change the quotas of a domain to set limits on the operational
resources that a Domain Administrator can distribute among all the projects in the domain.

GUI

1. Log in to the OpenStack Dashboard as the Cloud Administrator.

2. Inthe navigation pane, click IDENTITY > Domains.

3. On the Domains page, find the entry for the domain that you want to modify. In the Actions column
for that entry, click More > Edit.

4. In the Edit Domain window, click the Quota tab.

5. Edit the quota values as wanted.

6. Click Save.

8.1.6 Setting the Domain Administrator

Adding or removing users from the list of Domain Administrators to control a domain.
GUI

1. Log in to the OpenStack Dashboard as the Cloud Administrator.

2. In the navigation pane, click IDENTITY > Domains.

3. In the Domains page, select the entry for the domain. In the Actions column, click More > Edit.
The Edit Domain window opens.

4. Click the Domain Administrators tab.

5. To add a Domain Administrator, click +. The user is promoted from Domain User to Domain
Administrator for the default project only. You must manually add the Domain Administrator user to
all other projects in the domain, as described in Modifying user assignments for a project.

6. To remove a Domain Administrator, click -. The user is demoted from Domain Administrator to
Domain User for all projects in the domain, but is not removed from any projects.

7. Click Save.

CLI

$ openstack role add --domain S$domain --user $id of user admin

8.1.7 Setting a domain context

Cloud administrators can set the context of a domain in order to limit its visibility, rather than having
visibility across all domains. This allows the Cloud administrator to identify the projects, users,
groups, and roles that are associated with a domain.

GUI

1. Log in to the OpenStack Dashboard as the Cloud Administrator.
2. In the left navigation pane, click IDENTITY > Domains.
3. In the domains page, find the entry for the domain and click Set Domain Context.

8.1.8 Clearing the domain context

Cloud administrators can clear the scope of all domains, enabling visibility across all domains.

33

http://docs.openstack.org/admin-guide/cli-networking-advanced-quotas.html
http://docs.openstack.org/admin-guide/cli-networking-advanced-quotas.html#basic-quota-configuration
http://docs.openstack.org/admin-guide/cli-networking-advanced-quotas.html#configure-per-project-quotas

GUI

1. Log in to the OpenStack Dashboard as the Cloud Administrator.
2. In the left navigation pane, click IDENTITY > Domains.
3. In the domains page, select Clear Domain Context from the top right-hand corner.

8.1.9 Managing security groups
The Cloud Administrator can create, modify, or delete security groups in a domain.

GUI

1. Log in to the OpenStack Dashboard as the Cloud Administrator.

2. In the navigation pane, click PROJECT > Access & Security. In the Access & Security panel, you
can create, modify or delete a security group.

3. To modify a security group, click Manage Rules for the group that you want to modify and add or
delete rules for the security group.

8.2 Managing Projects

The Cloud or Domain administrator can set the level of access for each project with the user
interface.

8.2.1 Creating a project
The administrator can assign individual zones to a domain with the OpenStack Dashboard.

GUI
1. Log in to the OpenStack Dashboard as a Cloud or Domain Administrator.
2. Open the projects page by clicking IDENTITY > Projects in the navigation pane.
3. Click Create Project. The Create Project window is displayed.
4. Specify the name for the project.
5. Optional: Enter a description for the project
6. Optional: By clearing the Enabled check box, the project is disabled and users cannot log into it.
7. Click Create Project.
CLi

$ openstack project create S$project --domain S$domain
See http://docs.openstack.org/mitaka/install-guide-obs/keystone-users.htmi
8.2.2 Enabling a project

Enabling a project allows you to set that project as your default project. The action only appears if
the project is disabled.

8.2.3 Editing a project
You can modify the name and description of a project.

8.2.4 Disabling a project
Disabling a project in a domain means that the users who previously had that project set as their
default cannot log in to it anymore. Other users also cannot switch to this project anymore.

8.2.5 Deleting a project
Delete a project in the OpenStack Dashboard as the Cloud or Domain Administrator.

34

8.2.6 Assigning a zone to a project

Assigning a zone to a project enables users within a zone to access a specific project.

GUI

8.

Log in to the OpenStack Dashboard as the Cloud or Domain Administrator.

Open the domains page by clicking IDENTITY > Domains in the navigation pane.

In the domains page, find the entry for the domain and select Set Domain Context in the Actions
column. The Identity Panel group is now in the context of the selected domain and the Domains
page is also changed. You are now working within the context of the domain that you created.
Select IDENTITY > Projects.

In the Actions column in the table for the project, click the arrow icon then click the Edit Project
option.

Click the Availability Zones tab. The available zones and the assigned zones are listed in the
following format: Zone Name - Region Name.

To assign a zone to a domain, from the list of Available Zones, click the plus button beside the
zone name. The selected zone moves to the Assigned Zones list. To return an Assigned Zone to
an Available Zone, select the minus button beside the zone name. Use the Filter field to search
for specific zones.

When you have assigned all zones, click Save.

8.2.7 Configuring project quotas
The Cloud or Project Administrator can configure the project quotas, in order to limit the following

resources:

Number of volumes that can be created

Total size of all volumes within a project as measured in GB
Number of instances that can be started

Number of processor cores that can be allocated

Publicly accessible IP addresses

Quotas can be enforced at both the project and the project-user level.

Compute service quotas

o Set Compute quotas for a project (project)

o Set Compute quotas for a project user
Block Storage service quotas

o View Block Storage quotas

o Set Block Storage service quotas
Networking service guotas

o Basic quota configuration

o Configure per-project guotas

8.3 Managing Nested Quotas

Nested quotas allow deciding how to divide resources among hierarchical sub-projects.

For example, the following commands updates the quota of volumes assigned to a project:

$ cinder quota-update PROJECT_ID --volumes 10

+-=-=--

------------------- +-------4

Property | value |

35

http://docs.openstack.org/admin-guide/cli-set-compute-quotas.html
http://docs.openstack.org/admin-guide/cli-set-compute-quotas.html#view-and-update-compute-quotas-for-a-project-project
http://docs.openstack.org/admin-guide/cli-set-compute-quotas.html#view-and-update-compute-quotas-for-a-project-user
http://docs.openstack.org/admin-guide/cli-cinder-quotas.html
http://docs.openstack.org/admin-guide/cli-cinder-quotas.html#view-block-storage-quotas
http://docs.openstack.org/admin-guide/cli-cinder-quotas.html#edit-and-update-block-storage-service-quotas
http://docs.openstack.org/admin-guide/cli-networking-advanced-quotas.html
http://docs.openstack.org/admin-guide/cli-networking-advanced-quotas.html#basic-quota-configuration
http://docs.openstack.org/admin-guide/cli-networking-advanced-quotas.html#configure-per-project-quotas
http://docs.openstack.org/mitaka/config-reference/block-storage/nested-quota.html

1
1
1
1
:
1
-+

| backup_gigabytes

| backups

| gigabytes

| gigabytes lvmdriver-1
| per_volume_gigabytes
| snapshots

| snapshots_lvmdriver-1
| volumes

| volumes_lvmdriver-1
+ _______________________

 —— 4
OCROPOOOO®O®®

1
1
1
1
:
1
-+

Once these volumes are assigned to the project, the amount of volumes that can be used by sibling
projects is reduced correspondingly.

8.4 Managing Groups

You can manage the level of access for each group in the Cloud with the user interface.

8.5 Managing Users

You can manage the level of access for each individual user.
8.5.1 Create a user

8.5.2 Add a user to a project
Add a user to a project and assign the user the role "Member" in the project:

S openstack role add --project $project id --user $id of user Member

8.6 Managing Networks

As a cloud administrator you can manage networks in the Cloud with the user interface.

36

9 OPERATIONS

This section should cover the steps to be performed for operating the cloud platform.

The book OpenStack Operations Guide by T. Fifield et al. O'Reilly 2014, presents a full guide on
OpenStack operations.

9.1 Front Desk

Describe interaction with users.

Ticketing system and escalation procedures.

9.2 Monitoring
Describe how to configure and setup the monitoring tools (Zabbix, Monarca) and how to keep an eye
on them.

9.3 Maintenance, Failures and Debugging
9.3.1 Cloud controller

9.3.2 Compute Nodes

9.3.3 Storage Nodes

9.3.4 Databases
9.4 Backup and Recovery

The OpenStack Guide on Backup and Recovery, describes how to back up the configuration files and
databases that the various OpenStack components use:

e Database Backups
e File System Backups
o Compute
Image Catalog and Delivery
Identity
Block Storage
Object Storage

Telemetry
Orchestration

Freezer is a distributed backup restore and disaster recovery as a service platform, capable of

o O O O O O

performing automated backups of:

e MySQL

e Nova

e Cinder

e MongoDB

37

http://www.stilson.net/documentation/OpenStack%20Operations%20Guide.pdf
http://docs.openstack.org/ops-guide/ops-backup-recovery.html
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#database-backups
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#file-system-backups
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#compute
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#image-catalog-and-delivery
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#identity
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#block-storage
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#object-storage
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#telemetry
http://docs.openstack.org/ops-guide/ops-backup-recovery.html#orchestration
https://wiki.openstack.org/wiki/Freezer
https://wiki.openstack.org/wiki/Freezer-backup-restore#MySQL
https://wiki.openstack.org/wiki/Freezer-backup-restore#Start_the_job_2
https://wiki.openstack.org/wiki/Freezer-backup-restore#Nova_Backups
https://wiki.openstack.org/wiki/Freezer-backup-restore#Cinder_Backups
https://wiki.openstack.org/wiki/Freezer-backup-restore#Parallel_Backups
https://wiki.openstack.org/wiki/Freezer-backup-restore#MongoDB_Backup

10 CLOUD FACILITIES FOR USERS

This section sketches which facilities are exposed to users of the cloud. A more detailed User’s Guide
will be published separately.

10.1 Images

10.1.1 Creating, selecting, sharing images

10.2 Instances

10.2.1 Choosing, creating flavors
10.2.2 Starting, deleting instances
10.2.3 Security groups

10.2.4 Taking snapshots

10.3 Volumes

10.3.1 Creating, attaching volumes

10.4 PaaS

10.4.1 Deploying a Juju bundle

Acknowledgments

We greatly acknowledge the contributions from the members of the GARR Task Force on Federated
Cloud: Marco Aldinucci, Massimo Coppola, Paolo De Rosa, Davide Salomoni, Giovanni Ponti. Very
helpful and critical comments were provided by Silvio Cretti and Giuseppe Cossu.

12 REFERENCES

1. GARR CSD. Requisiti per piattaforma Cloud GARR. 2016.
https://docs.google.com/document/d/14tlba-ohpKdgHTOte1 MvdmuSfRKCRtIHIYilY6qf0Zk/

2. GARR. Federazione Nazionale di Identita IDEM. http://www.idem.garr.it

3. Juniper. Contrail Architecture.
http://www.juniper.net/us/en/local/pdf/whitepapers/2000535-en.pdf

4. Federated keystone. http://docs.OpenStack.org/security-guide/identity/federated-keystone.html

5. Configuring Keystone for Federation
http://docs.OpenStack.org/developer/keystone/configure_federation.html

6. Keystone support for OpenlD Connect.
http://docs.OpenStack.org/developer/keystone/federation/openidc.html

38

https://docs.google.com/document/d/14tlba-ohpKdqHT0te1MvdmuSfRKCRt9HlYilY6qf0Zk/edit?usp=sharing
http://www.idem.garr.it/
http://www.juniper.net/us/en/local/pdf/whitepapers/2000535-en.pdf
http://docs.openstack.org/security-guide/identity/federated-keystone.html
http://docs.openstack.org/developer/keystone/configure_federation.html
http://docs.openstack.org/developer/keystone/federation/openidc.html

10.

11.

12.
13.

Migrating a legacy cloud infrastructure to Contrail SDN based infrastructure.
http://www.opencontrail.org/migrating-a-legacy-cloud-infrastructure-to-contrail-sdn-based-infr
astructure/

Canonical. Juju architecture and details. http://www.ubuntu.com/cloud/juju

Canonical. MaaS architecture and details. http://MaaS.io

FIWARE. Monitoring a Multi-region Cloud Based on OpenStack.
http://superuser.openstack.org/articles/monitoring-a-multi-region-cloud-based-on-openstack
HP. HP Reference Architecture for OpenStack on Ubuntu 14.04 LTS.
http://h20564.www2.hpe.com/hpsc/doc/public/display?docld=c04330703

OpenStack. Tricicle. https://wiki.openstack.org/wiki/Tricircle

Aswin Nares. 2015. Simple Cloud Federation using Availability Zones.
https://blueprints.launchpad.net/nova/+spec/simple-cloud-federation-using-availability-zones

39

http://www.opencontrail.org/migrating-a-legacy-cloud-infrastructure-to-contrail-sdn-based-infrastructure/
http://www.opencontrail.org/migrating-a-legacy-cloud-infrastructure-to-contrail-sdn-based-infrastructure/
http://www.ubuntu.com/cloud/juju
http://maas.io/
http://superuser.openstack.org/articles/monitoring-a-multi-region-cloud-based-on-openstack
http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04330703
https://wiki.openstack.org/wiki/Tricircle
https://blueprints.launchpad.net/nova/+spec/simple-cloud-federation-using-availability-zones

13 APPENDIX - INSTALLATION OF THE CLOUD INFRASTRUCTURE

This section provides step by step instructions for installing the cloud infrastructure for a region to be
part of the GARR Federated Cloud.

Requirements

It is recommended to use servers with:
® CPU: 2+ cores (physical or vcpu)
° RAM: 4+ GB

® NET: 2+ networks (one dedicated to IPMI

13.1 Installing the MAAS server

1. Choose a server, or better an LXC container, to become the MAAS server. Follow the steps provided at
http://maas.ubuntu.com/docs/install.html to install MAAS on the server. Major setup steps include:
e Install maas, maas-dhcp, and maas-dns packages
L] Create super user account
® In “Settings” tab:
i. under “Ubuntu” section, add “http://mi.mirror.garr.it/ubuntu/” as <<Main archive>>

ii. under “Boot Images” section, add “http://maas.ubuntu.com/images/ephemeral-v2/daily/” as
<<Sync URL>>
Import boot images

Setup DHCP service

2. Set the rest of the servers to PXE boot.
° Connect to each server through iLO.
e Set the Server Boot Order to boot from ‘Network Device 1’ first.
e Reboot each server. This will cause the node to PXE from the MAAS server and initial discovery will take
place.

3. After the nodes are discovered, log on to the MAAS server web interface at
http://${my-maas-server}/MAAS, where $ {my-maas-server} should be replaced with
the hostname of your MAAS server. Edit each node to verify MAAS has correctly detected
configuration information for the iLO. You can associate the iLO ip-address with the node by
comparing the mac addresses of the nodes that are discovered with those reported in the iLO System
Information->Network tab. The following information in the MAAS Edit node screen should be
accurate to ensure nodes are fully manageable:

e Power Type: IPMI

e Power Driver: LAN_2_0 [IPMI 2.0]

e |P Address <The IP Address of the iLO>
. Username: <iLO User Name>

. Password: <iLO Password>

4. If you are using IPMI connection for connecting hardware:
e From the MaaS GUI, click on “Add Hardware” and then “Machine”
e Insert name in all the form boxes
o Select IPMI from the “Power Type” list and compile forms
e Press the “Save Machine” button. The hardware will reset and boot automatically.

5. In the MAAS web interface, set default distro series used for deployment commissioning and
deployment to Ubuntu 16.04 LTS. Accept and commission each node via the web interface to install
the selected series of Ubuntu.

6. Follow the steps documented at http://maas.ubuntu.com/docs/tags.html to add tag “controller” and

40

http://mi.mirror.garr.it/ubuntu/
http://maas.ubuntu.com/images/ephemeral-v2/daily/

“storage” to each controller and storage server, respectively. We will later use these tags to ensure
OpenStack services get deployed to the appropriate nodes.

13.2 Install Juju

Follow the steps provided at https://maas.ubuntu.com/docs/juju-quick-start.html to install Juju on the MAAS
server.

1. Create SSH keys
Juju requires SSH keys to be able to access the deployed nodes. In case those keys do not exist, then we have to
create them before we bootstrap our environment:
$ ssh-keygen -t rsa

2. Get APl key
You’ll need an APl key from MAAS so that the Juju client can access it. To get the API key, go to your MAAS home
page http://${my-maas-server}:80/MAAS/ and choose Preferences from the drop-down menu that
appears when clicking your username at the top-right of the page.

3. Adding an SSH key
While you are still on the MAAS preferences page, add your SSH key by clicking Add SSH key. Use the public half of

your SSH key, the content of ~/.ssh/id rsa.pub for example; do not paste the private half

4. Install juju client needed to deploy juju controllers on nodes
$ sudo apt-get install juju

5. Creating environments.yaml|
Create or modify ~/.juju/environments.yaml with the following content:
environments:
Maas:
type: maas
maas—-server: 'http://${my-maas-server}:80/MAAS'

maas-oauth: '${maas-api-key}'

admin-secret: ${your-admin-secret}

default-series: trusty

bootstrap-timeout: 3600
Substitute the API key from earlier into the $ {maas-api-key} slot, and the hostname of your MAAS server
into the $ {my-maas—-server} slot.
The ${your-admin-secret} slot should be replaced with a random pass-phrase, there is no default. You
can later use this pass-phrase to login to Juju node or Juju GUI.
“bootstrap-timeout” increases the default timeout value from 10 minutes to 1 hour.

6. Bootstrap the MAAS configuration
Execute the bootstrap step to deploy a controller node:
S juju bootstrap --constraints tags=controller
The master node may take a long time to come up. It has to completely install Ubuntu and Juju on it and reboot
before it will be available for use. It is probably worth following the install on the node directly via iLO remote
console.
After bootstrap is completed, as an optional step, you can install the Juju GUI to help with the tasks of managing
and monitoring your Juju environment:
$ juju deploy juju-gui --to <<node>> #insert name of the desired node

13.3 Deploying the Cloud Infrastructure with Juju

1. Download the GARR Reference Architecture bundle <nome del bundle> from <URL del bundle>.

2. Edit the configuration file bundle.yaml to suite your needs.

41

For example you can increase the number of Nova Compute units.
There are more options for each charm, look at each respective charm's config. yaml.

3. Deploy OpenStack with Juju:
$ juju deploy -c bundle.yaml
If the deployment stops or you see errors, try repeating the command adding “--debug” in order to see detailed

output messages.

4. Expose the services you want (optional)
The last step is to expose the services that should be made available to outside requests and opening the
required firewall ports in the security group. Depending on charm versions, this step is optional since
corresponding ports may be opened up by default.
$ juju expose openstack-dashboard
$ juju expose nova-cloud-controller

13.4 Validation
At this point, the Openstack cloud has been deployed and should be functioning.

1. Point your browser to the public address of the openstack-dashboard node,
http://${node-address}/horizon. Use the command "juju status openstack-dashboard"
to get its IP address.

2. Login using admin/${admin-password} (password defined in openstack.cfg above) and you can
begin using the cloud, adding users, etc.

42

